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Abstract 37 

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is the deadliest 38 

single-agent infection worldwide. Current antibiotic treatment for TB takes a 39 

minimum of four months, underscoring the need for better therapeutics. The unique 40 

mycobacterial cell envelope, particularly the outermost mycomembrane, has long 41 

been thought to promote intrinsic antibiotic resistance by limiting compound entry 42 

into Mtb. Understanding chemical features that influence permeation across the 43 

mycomembrane may enable more accurate predictions of whole cell anti-Mtb 44 

activity, leading to development of more effective antibacterials. Here we query the 45 

mycomembrane permeation of over 1500 azide-tagged compounds in live Mtb with 46 

the bioorthogonal click chemistry-based assay PAC-MAN. We use cheminformatics 47 

and machine learning to identify chemical features associated with mycomembrane 48 

permeation and show that they have predictive value via systematic modification of 49 

two small molecule series. Additionally, we find that chemical features that influence 50 

mycomembrane permeation correlate with anti-Mtb activity in large compound 51 

libraries. These findings suggest that the mycomembrane is indeed a significant 52 

barrier to whole cell activity in Mtb and provide a rational framework for designing or 53 

modifying compounds to overcome this barrier. 54 

 55 

Introduction 56 

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) consistently claims 57 

over one million lives each year1. Antibiotic treatment is lengthy, complex, and 58 

variably effective. High doses are often required for TB treatment, which in turn 59 

increase the risk of side effects and reduce patient compliance. Better drugs and 60 

drug regimens to target TB are urgent public health priorities.  61 
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An outstanding challenge in developing or improving drugs for TB, as with many 62 

other diseases, is ensuring that drug candidates accumulate within the cells 63 

implicated in disease pathogenesis2, 3. To achieve whole cell activity, a molecule 64 

must overcome several barriers, including membranes, efflux, and metabolism, to 65 

accumulate with the kinetics and at the concentrations required to effectively engage 66 

its target. The physicochemical features or moieties of a molecule that enable it to 67 

overcome individual accumulation barriers are divergent and sometimes at odds4. 68 

Moreover, even within bacteria there are likely inter-species and genera differences 69 

in molecule accumulation. For example, the extent and/or pattern of accumulation for 70 

certain antibacterials, nutrients, and other molecules differ in mycobacteria relative to 71 

Gram-negative bacteria5-8. This inference has been generalized with the 72 

determination of molecular correlates of accumulation for the Gram-negative species 73 

Escherichia coli and Pseudomonas aeruginosa9, 10 and the mycobacterial pathogen 74 

Mycobacterium abscessus11. Strikingly, physicochemical properties alone, including 75 

those associated with E. coli or P.  aeruginosa accumulation, fail to predict M. 76 

abscessus accumulation and necessitated a deep learning approach to identify 77 

correlates11. These findings indicate that molecule accumulation in Mtb is likely to be 78 

a complex phenotype. 79 

Identifying chemical features that promote Mtb cell accumulation may enable more 80 

rapid development of new tuberculosis treatments. One way to address the 81 

complexity of accumulation is to focus on chemical features that enable a molecule 82 

to overcome a single barrier. For example, it has long been assumed that Mtb and 83 

other mycobacterial pathogens are intrinsically resistant to certain drugs in part 84 

because of the impermeability of their outermost mycomembrane6, 12, 13. This 85 

assumption is predicated on studies showing that mycomembrane disruptions 86 
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sensitize mycobacteria to a subset of antibacterials6, 7, 12-15. However, activity is an 87 

indirect proxy for uptake; collateral metabolic dysfunction from cell envelope 88 

perturbation16-19 may also impact drug sensitivity. 89 

Here we addressed the complexity of Mtb accumulation by first screening a small 90 

molecule library for mycomembrane permeation and then deploying machine 91 

learning to discover chemical features that influence this phenotype. We used our 92 

recently-developed, click chemistry-based assay Peptidoglycan Accessibility Click-93 

Mediated AssessmeNt (PAC-MAN7, 20; Fig. 1a) to measure the permeation of over 94 

1500 small molecules across the mycomembrane of live Mtb. Cheminformatics 95 

analyses suggest that the rules for mycomembrane permeability are not simple, as 96 

physicochemical properties have scaffold-dependent effects. To capture structure-97 

function relationships more holistically, we trained a neural network to predict 98 

mycomembrane permeability for any compound, then queried for chemical features 99 

predictive of permeability. De novo chemical synthesis and mycomembrane 100 

permeation testing of a two small molecule series confirmed that the chemical 101 

features identified by cheminformatics and machine learning are predictive. Finally, 102 

we showed that scaffolds and other chemical features that predict mycomembrane 103 

permeation also correlate with anti-Mtb activity. Our work supports the long-standing 104 

hypothesis that the mycomembrane is a major barrier to whole cell activity in Mtb 105 

and suggests that improving the ability of a molecule to permeate the 106 

mycomembrane may aid the rational design or redesign of more effective drugs for 107 

tuberculosis. 108 

 109 

  110 
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Results 111 

High-throughput screening of mycomembrane permeability 112 

The PAC-MAN assay (Fig. 1a) first proceeds via metabolic labeling of peptidoglycan, 113 

the cell wall polymer immediately beneath the arabinogalactan-mycomembrane layer 114 

of the cell envelope, with a dibenzocyclooctyne (DBCO) probe. A portion of the 115 

peptidoglycan-embedded DBCO is captured via bioorthogonal, strain-promoted 116 

alkyne-azide cycloaddition (SPAAC21-23) with azide-tagged test molecules. The 117 

remaining DBCO groups are revealed via SPAAC with a fluorescent azide. The level 118 

of mycobacterial cell fluorescence, measured by flow cytometry, inversely correlates 119 

with permeation of the azide test molecule across the mycomembrane7, 20. We used 120 

PAC-MAN to screen Mtb mc26206 (H37Rv ΔpanCD ΔleuCD)24 and the model 121 

organism Mycobacterium smegmatis mc2155 (Msm)25 with 1572 azide test 122 

molecules from three sources: 1152 synthesized via fluorosulfuryl azide chemistry 123 

from the corresponding primary amine (Sharpless/Dong26), 380 purchased from 124 

Enamine, and 40 purchased from various commercial sources (Fig. 1b; Fig. S1). 125 

The latter two sources contain molecules with primary amines. To control for the 126 

intrinsic reactivities of azide test molecules toward DBCO7, 20, we also screened 127 

DBCO-functionalized polystyrene beads that have bacteria-like dimensions but are 128 

devoid of a permeability barrier (Fig. 1b). Previously we controlled for reactivity and 129 

calculated mycomembrane permeation by exposing DBCO-labeled beads and 130 

mycobacteria to different concentrations of azide test molecules, then calculating the 131 

difference in concentration of test azide molecule that competes fluorescence by 132 

50% in the two systems (Δlog10CC50)7. For higher-throughput calculation of 133 
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mycomembrane permeation, we instead exposed DBCO-labeled beads and 134 

mycobacteria to fixed concentrations of test azide molecules then performed log-135 

linear regression analyses to calculate the differences between observed and 136 

Figure 1. High-throughput screening of mycomembrane permeability. (a) Schematic of 
PAC-MAN assay (adapted from7). In Step 1, Mtb or Msm is incubated with the DBCO-
bearing TetD probe to tag cell wall peptidoglycan. Mycobacteria are then exposed to an 
azide-modified test molecule (Step 2) followed by an azide fluorophore (Step 3). Test azides 
that do not permeate the mycomembrane do not access cell wall-embedded DBCO. DBCO 
that do not react in Step 2 are free to react with azide fluorophores in Step 3, resulting in 
high fluorescence. Conversely, test azides that permeate the mycomembrane can access 
and react with DBCO in Step 2, preventing DBCO from reacting with azide fluorophores in 
Step 3 and resulting in low fluorescence.  (b) PAC-MAN screening of three test azide 
libraries: Sharpless/Dong (1152), Enamine (380), or other commercial sources (40). 
Screening was performed on Mtb, Msm, and DBCO-polystyrene beads to normalize for test 
azide reactivity. Standardized residuals were extracted from log-linear regression analyses 
for individual libraries as shown. Values for standardized residuals are inversely proportional 
to mycomembrane permeability of test azide. 
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expected fluorescence (standardized residuals; Fig. 1b; Fig. S2). The standardized 137 

residuals for compounds shared between the Sharpless/Dong and Enamine libraries 138 

were consistent (Fig. S3). 139 

 140 

Cheminformatics analyses identify chemical features associated with 141 

mycomembrane permeability 142 

We first analyzed the correlation between the presence of small chemical scaffolds 143 

and mycomembrane permeability. We used a permissive strategy (Fig. 2a, Fig. S4), 144 

which permits the scaffold of interest to be fused or not with other rings, as well as a 145 

“greedy” strategy that excludes the ring-fused versions of the scaffold (Fig. 2b). For 146 

both Msm and Mtb we found that aromatic nitrogen-containing scaffolds like indole, 147 

imidazole, or pyrazole correlate positively with permeation (negative medians for 148 

standardized residuals), while scaffolds like cyclopentane or cyclohexane correlate 149 

negatively (positive medians). 150 

We next investigated the correlation between mycomembrane permeation and 151 

physicochemical properties (Fig. 2c). When analyzed as a whole, our Mtb dataset 152 

did not reveal obvious correlations. Notably, the physicochemical properties 153 

previously shown to correlate with Gram-negative accumulation9, 10, 27 were not 154 

associated with mycomembrane permeation (Fig. S5). Reasoning that the 155 

contributions of physicochemical properties may depend on the structural context in 156 

which they occur, we repeated the cheminformatics analyses after grouping 157 

compounds by the presence of specific scaffolds as in Fig. 2a. We found that the  158 

 159 
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 160 

Figure 2. Chemical scaffolds and physicochemical properties that correlate with 
mycomembrane permeability. (a) Mycomembrane permeability (standardized [St] 
residuals) for test azides grouped by the presence of a specific ring-containing scaffold, 
indicated on top. (b) “Greedy” scaffold analysis excludes the fused rings structures. 
Numbers below the plots are the number of compounds in each group. (c) Correlation 
between mycomembrane permeability and selected physicochemical properties for all test 
azides (whole dataset, bottom) and for subgroups bearing the scaffolds plotted in (a-b). 
Numbers in brackets are the number of compounds in each group. Red and blue 
respectively denote positive and negative correlations between the indicated 
physicochemical properties and mycomembrane permeation. For descriptors explanation 
see Figure S1.  
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effects of physicochemical properties on mycomembrane permeability varied by 161 

scaffold. For example, topological polar surface area (TPSA) and log partition 162 

coefficient (logP; Crippen logP calculation from RDKit28) have strong, positive 163 

correlations with mycomembrane permeation when a molecule contains an indazole 164 

or naphthalene, respectively, but have weak and/or negative correlations with 165 

mycomembrane permeation in the context of most other scaffolds. These 166 

observations are significant as lipophilicity is generally viewed as a positive attribute 167 

for antitubercular drugs29 and underscores the challenge of identifying molecular 168 

correlates of Mtb accumulation even for a single barrier. 169 

  170 

Machine learning predicts chemical features that are associated with 171 

mycomembrane permeation 172 

We built a machine learning (ML) model, called Mycobacterial Permeability neural 173 

Network (MycoPermeNet), to capture the complex relationship between chemical 174 

structure and mycomembrane permeability (Fig. 3a, Fig. S6). Inspired by recent 175 

successes in deep learning for antibacterial discovery30, 31, the model takes SMILES 176 

strings and Mtb screening data (standardized residuals) as inputs, then uses a two-177 

stage process to predict mycomembrane permeability. First, it learns to generate 178 

vector representations of chemical compounds, called embeddings, using a 179 

message passing neural network on molecular graphs implemented in Chemprop32. 180 

It then uses a downstream multilayer perceptron to convert embeddings into a 181 

permeability prediction (i.e., predicted standardized residuals). The two stages are 182 

trained independently using an 80-10-10 train-validate-test split to optimize 183 

hyperparameters and perform model selection. The multilayer perceptron performed  184 
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 185 

Figure 3. Machine learning model development and interpretation. (a) Pipeline for machine 
learning (ML) model MycoPermeNet development. (b) ML-predicted vs. experimentally-observed 
mycomembrane permeation data (standardized residuals) for both the training (left) and validation 
(right) sets. (c) The 20 most-permeable chemical scaffolds predicted from the ML model. (d) Pipeline 
for surrogate XGBoost ML model SHAP-based interpretability studies. (e) Ranking of top-15 (out of 
26) physicochemical properties prioritized by the ML model to drive its prediction across all 
compounds. Molecular descriptors calculated by RDkit and Collaborative Drug Discovery (CDD) 
Vault. (f) Interpretation of the ML predictions for a specific molecule (W1 peptide, see Fig. 4a) from 
the perspective of physicochemical properties (descriptors). Rationalization and quantification of the 
positive or negative effect of the top-15 (out of 26) descriptors on molecule permeability across the 
mycomembrane. For results relative to the full list of descriptors see Figure S7. RMSE: squared root 
of mean squared error; MAE: mean absolute error. For descriptors explanation see Fig S1. N = 
number of compounds; F = number of descriptors. D = dimension of embeddings. 
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the best on the validation set out of several model architectures tested (Fig. S6). Our 186 

final model achieves R2, RMSE, and MAE respectively of 0.74, 0.50, and 0.37 for the 187 

train set and 0.72, 0.37, and 0.41 for the held-out test sets (Fig. 3b), indicating a 188 

strong relationship between measured and predicted mycomembrane permeability. 189 

Moreover, we achieve Spearman rank correlation coefficients of 0.85 on the train set 190 

and 0.86 on the held-out test set, demonstrating that our model correctly ranks the 191 

relative permeability of compounds even better than it predicts their absolute 192 

permeability scores. 193 

To test whether MycoPermeNet is learning reasonable relationships between 194 

molecular structure and mycomembrane permeability, we asked the model to predict 195 

permeability scores for every Bemis-Murcko scaffold found in the dataset (n=217). 196 

Among the 20 scaffolds predicted as most permeable (Fig. 3c) we found various 197 

indole or indole-like scaffolds, as well as imidazole- and pyrazole-like scaffolds. The 198 

concordance between the ML- and cheminformatics-based (Fig. 2) analyses serves 199 

as a validation of the ML approach and further reinforces that the presence of certain 200 

nitrogen aromatic heterocycles correlates with mycomembrane permeability.  201 

To gain additional insights into the physicochemical properties that correlate with 202 

molecule permeation across the mycomembrane we performed interpretability 203 

studies of MycoPermeNet (Fig. 3d-f; Fig. S7). Because our model is based on input 204 

chemical structures, which are meaningful individually but difficult to summarize 205 

across our large and diverse dataset, we built a surrogate model33 to determine 206 

which human-interpretable chemical descriptors have the highest influence on the 207 

permeability predictions made by MycoPermeNet. Specifically, we used a surrogate 208 

XGBoost34 to predict the outputs of MycoPermeNet from 26 hand-selected input 209 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2025. ; https://doi.org/10.1101/2025.02.27.640664doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.27.640664
http://creativecommons.org/licenses/by-nc/4.0/


features (23 calculated with RDKit28 and 3 calculated with Collaborative Drug 210 

Discovery [CDD] Vault35) that we considered important for mycomembrane 211 

permeability. After training our surrogate XGBoost model (R2, RMSE, and MAE 212 

respectively of 0.84, 0.33, and 0.25 for the train set and 0.83, 0.38, and 0.28 for the 213 

held-out test set, where the R2 on the held-out test set explains 83 percent of the 214 

variance in relationship between the features and MycoPermeNet), we interpret its 215 

features using SHAP36 (SHapley Additive exPlanations; Fig. 3d). In this analysis, the 216 

two most influential physicochemical properties are TPSA and logP (Fig. 3e; Fig. 217 

S7a). While SHAP returns properties that drive mycomembrane permeability 218 

predictions across the dataset, it can also predict which features are responsible for 219 

the permeability prediction for individual compounds (Fig. 3f; Fig. S7b). This 220 

analysis provides both a qualitative and quantitative interpretation of the impact of 221 

physicochemical properties on mycomembrane permeability. 222 

 223 

Chemical features that are associated with mycomembrane permeation have 224 

high predictive value 225 

We hypothesized that molecular features identified by cheminformatics and/or 226 

predicted by MycoPermeNet to correlate with mycomembrane permeability are 227 

causative. We first tested this hypothesis with a pentapeptide series (Phe-Lys-Phe-228 

Lys-Phe) in which we systematically substituted phenylalanines for tryptophans (Fig. 229 

4a). The side chains of phenylalanine and tryptophan respectively bear benzene, 230 

which is weakly and negatively associated with mycomembrane permeability, and 231 
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indole, which is strongly and positively associated with mycomembrane permeability 232 

Figure 4. Chemical features identified by cheminformatics and ML influence mycomembrane 
permeation. (a-d) Analysis of a pentapeptide series in which benzene-containing phenylalanines 
are systematically substituted with indole-containing tryptophans (W1-3). The presence of indole or 
benzene scaffolds are respectively associated with more or less mycomembrane permeability (Fig. 
2a-b). (a) Peptide chemical structures; (b) PAC-MAN results for Mtb and beads; (c) observed 
(∆log10CC50) and (d) ML-predicted mycomembrane permeability. (e-h) Analysis of an antitubercular 
candidate series. JSF-2985 (e, top) was derivatized to bear an azide and chemical scaffolds that are 
associated with more (imidazole, pyrrole, pyrrolidine) or less (cyclopentane) mycomembrane 
permeability (Fig. 2a-b). (f) PAC-MAN results for Mtb and beads; (g) observed (∆log10CC50) and (h) 
ML-predicted mycomembrane permeability. (i) Correlation between observed and ML-predicted 
mycomembrane permeability across the two compound series.  
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(Fig. 2a-b). We found that substitution of phenylalanines for tryptophans enhanced 233 

mycomembrane permeation of the peptides in both Mtb and Msm (Fig. 4b-c; Fig. 234 

S8), consistent with both cheminformatics analyses (Fig. 2a-b) and MycoPermeNet 235 

predictions (Fig. 4d). 236 

We next tested our hypothesis with a small molecule series based on JSF-2985, an 237 

antitubercular small molecule we previously reported37. We synthesized JSF-2985 238 

analogs via replacement of the 2-position primary amide’s N-H with moieties that 239 

correlate positively (imidazole, pyrazole, and pyrrolidine) or negatively 240 

(cyclopentane) with mycomembrane permeation (Fig. 4e). We chose the 2-position 241 

amide N-H as the location of the new substituents based on docking studies that 242 

suggest that the amide group is not directly involved in the engagement of the target 243 

but instead lies outside the binding pocket and it is thus exposed to the solvent (Fig. 244 

S9). We found that JSF-2985 derivatives with imidazole, pyrazole, and pyrrolidine 245 

scaffolds permeate the mycomembrane better than the JSF-2985 derivative bearing 246 

cyclopentane (Fig. 4f-g), consistent with both cheminformatics analyses (Fig. 2a-b) 247 

and MycoPermeNet predictions (Fig. 4h). The excellent correlation between ML-248 

predicted and observed permeation of the mycomembrane  across the two small 249 

molecule series (Fig. 4i) suggests the potential to rationally tune the ability of a 250 

molecule to traverse this barrier. 251 

 252 

Chemical features that predict mycomembrane permeability correlate with 253 

whole cell activity 254 

We and many others have shown that mycomembrane disruption sensitizes Mtb to 255 

some antibacterials6, 7, 12-15. Thus, we hypothesized that mycomembrane permeation 256 
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is a key determinant of whole cell anti-Mtb activity. Our docking studies (Fig. S9) 257 

suggested that the JSF-2985 derivatives have a high probability of target binding. 258 

However, we found that Mtb growth inhibition by these molecules did not reflect their 259 

mycomembrane permeation profiles (Fig. S9b-c), highlighting the complex 260 

relationship between molecule accumulation and activity. 261 

We reasoned that a larger dataset, both in terms of the number and size of 262 

molecules, would better test our hypothesized relationship between mycomembrane 263 

permeation and activity. To this end, we performed a retrospective analysis on a 264 

small molecule library previously screened for anti-Mtb activity38, 39. We looked for 265 

sets of molecules within the ~200k Molecular Libraries Small Molecule Repository 266 

(MLSMR; data obtained from CDD database35, Burlingame, CA. 267 

www.collaborativedrug.com) collection that have similar structures but differ in the 268 

presence or absence of mycomembrane permeability-promoting scaffolds (Fig. 2a-269 

b) in peripheral positions. We chose this scheme to decrease the likelihood of the 270 

scaffold contributing directly to target engagement. In the four distinct molecule sets 271 

that met our criteria (Fig. 5a-b; Fig. S10), compound activity correlated with the 272 

presence of these scaffolds and, more generally, with ML-predicted mycomembrane 273 

permeation (note that standardized residuals are inverted in Fig. 5, Fig. S10, and 274 

Fig. S12 for more intuitive comparisons to activity). 275 
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Because we do not know the targets of these compounds, we next examined the 276 

Figure 5. Scaffolds and chemical features that influence mycomembrane permeation 
correlate with whole cell anti-Mtb activity. (a) Relationship between whole cell anti-Mtb activity 
and ML-predicted mycomembrane permeability for 101 MLSMR compounds that share the indicated 
structure. The presence of an indole is highlighted in orange. (b) Four examples of structures from 
(a), one for each combination +/-indole and +/- activity. (c-d) Scaffold-specific relationship between 
activity against whole Mtb cells (c) or against a purified Mtb enzyme (serine protease Rv3671c (d)) 
and observed mycomembrane permeation (inverted standardized residuals). X axis is median 
mycomembrane permeability for test azides that share indicated scaffolds (from Fig. 2a). Y axis is 
percentage of activity enrichment for MLSMR and TAACF molecules that share the same scaffold 
relative to all the molecules in the respective datasets (Figure S12). Y axis data available from CDD 
(c) or publicly available from PubChem (AID 2606) (d). (e-f) Relationship between (e) whole cell 
anti-Mtb activity (MLSMR) or (f) purified Rv3671c enzyme inhibition and ML-predicted 
mycomembrane permeation. Each library was divided into quadrants (threshold for permeability: 
median; threshold for activity: bottom and top 15% of the total values of the libraries (MLSMR) or 
bottom and top 1% values (Rv3671c), see Figure S12 for further analyses) and the number of values 
per quadrant were plotted in (e) and (f) respectively. The association in (e) is significantly stronger 
than the association in (f) by Cramer’s V. 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2025. ; https://doi.org/10.1101/2025.02.27.640664doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.27.640664
http://creativecommons.org/licenses/by-nc/4.0/


relationship between chemical structure, mycomembrane permeability, and whole 277 

cell activity more broadly. We widened our analysis to three different screens: the 278 

MLSMR (above) and Tuberculosis Antimicrobial Acquisition and Coordinating Facility 279 

(TAACF; data obtained from CDD35) small molecule collections, which were 280 

screened against whole Mtb cells, and a third screen against the purified Mtb 281 

enzyme Rv3671c (PubChem AID 2606). In addition to activity data, the libraries 282 

afforded us the opportunity to examine molecules that do not have azide tags and 283 

occupy broader chemical space than that covered by our screening libraries (Fig. 284 

S11). We found that molecule activity in the whole cell screens, but not the enzyme 285 

screen, correlates with both observed permeability of different chemical scaffolds 286 

(Fig. 5c-d; Fig. S12) and with ML-predicted mycomembrane permeability (Fig. 5e-f; 287 

Fig. S12). These data suggest that scaffolds and other chemical features that 288 

influence mycomembrane permeation are correlates of whole cell anti-Mtb activity. 289 

 290 

Discussion 291 

Mass spectrometry studies that assess whole cell association have found that 292 

molecule accumulation varies across E. coli, P. aeruginosa, and Acinetobacter 293 

baumannii, likely reflecting species-specific differences in molecule transit via porins, 294 

diffusion across the outer membrane, and transit via efflux pumps9, 10, 40. Given that 295 

the Mtb mycomembrane has a structure6, 12, 13 and porin-like proteins41, 42 that are 296 

distinct from those of the Gram-negative outer membrane, it is not surprising that the 297 

predictors of mycomembrane permeation that we identify here are different from 298 

those of Gram-negative bacteria accumulation9, 10, 27. Future use of Mtb strains with 299 
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targeted disruptions to mycomembrane transporters or structural integrity may 300 

enable the identification of pathway-specific predictors of permeation. 301 

One limitation of PAC-MAN is that it requires the presence of an azide. Azides are 302 

widely recognized as ideal bioorthogonal tags because they are small and have 303 

minimal known impacts on the physicochemical properties of the parent compound21, 304 

43. While we cannot rule out potential effects of the azide on mycomembrane 305 

permeation, we note that the chemical features that we identified as predictors of this 306 

phenotype from azide-tagged libraries are also correlates of whole cell activity for 307 

untagged compounds (Fig. 5; Fig. S10; Fig. S12). We speculate that the constancy 308 

of the azide across all the test molecules, the large number of test molecules, and 309 

the redundancy of some test molecules (i.e., compounds that differ only in the 310 

position of the azide) contribute to our ability to predict mycomembrane permeation.  311 

Intracellular accumulation in Mtb depends on the ability of a molecule to overcome 312 

membrane, efflux, and metabolism barriers2, 3. Because it covalently traps test 313 

molecules in the mycobacterial cell wall, PAC-MAN primarily measures 314 

mycomembrane permeation, e.g., passive diffusion and facilitated transport7, 20. As 315 

well, our test molecules are relatively simple in structure as they have a median size 316 

of 180 Da and generally abide by Lipinski’s rule of five44. The restrictions on cell 317 

compartment and chemical space queried are both a strength and limitation of our 318 

work. On the one hand, we were able to identify clear structure-function relationships 319 

for an aspect of intracellular accumulation. Moreover, these relationships, where 320 

tested, accurately predicted mycomembrane permeation. Chemical predictors of 321 

mycomembrane permeation have obvious potential in informing the (re)design of 322 

anti-Mtb therapeutics against periplasmic targets. Direct and indirect data from this 323 
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work and the literature, respectively, suggest these predictors may have even 324 

broader utility, i.e., evaluation of compounds with cytoplasmic targets. On the other 325 

hand, the structure-function relationships that we identify here may not suffice as 326 

predictors for larger, more complex molecules or for whole cell accumulation. 327 

Expansion of the chemical space covered by our azide libraries beyond Lipinski’s 328 

rule of five45, along with whole cell mass spectrometry4, 5, 9-11, 40, 46, 47, adaptation of 329 

PAC-MAN for the cytoplasm48, and the use of strains with defined membrane, efflux, 330 

or metabolism defects4, 48, 49 will collectively enable the generation of more 331 

comprehensive accumulation models. 332 
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